
Python: module cdms.gengrid

cdms.gengrid index
CDMS Generic Grids

Modules
MA Numeric PropertiedClasses cdms.bindex

Classes

cdms.hgrid.AbstractHorizontalGrid(cdms.grid.AbstractGrid)
AbstractGenericGrid

DatasetGenericGrid
FileGenericGrid
TransientGenericGrid

class AbstractGenericGrid(cdms.hgrid.AbstractHorizontalGrid)

Method resolution order:
AbstractGenericGrid
cdms.hgrid.AbstractHorizontalGrid
cdms.grid.AbstractGrid
cdms.cdmsobj.CdmsObj
cdms.internattr.InternalAttributesClass
PropertiedClasses.Properties.PropertiedClass

Methods defined here:

__init__(self, latAxis, lonAxis, id=None, maskvar=None, tempmask=None, node=None)
Create a generic grid.

__repr__(self)

__str__ = __repr__(self)

checkAxes(self, axes)
Return 1 iff every element of getAxisList() is in the list 'axes'.

clone(self, copyData=1)

flatAxes(self)

1/18

Return (flatlat, flatlon) where flatlat is a 1D NumPy array
having the same length as the number of cells in the grid, similarly
for flatlon.

genBounds(self)
Don't try to generate bounds for generic grids

getAxis(self, naxis)
Get the n−th index axis. naxis is 0 or 1.

getAxisList(self)

getGridSlices(self, domainlist, newaxislist, slicelist)
Determine which slices in slicelist correspond to the lat/lon elements
of the grid.
domainlist is a list of axes of a variable.
newaxislist is a list of result axes after the slicelist is applied to domainlist.
slicelist is a list of slices.

All lists are of equal length.

Return value is (newslicelist, gridaxislist) where
newslicelist is the elements of slicelist that correspond to the grid, in the
 preferred order of the grid.
gridaxislist is the elements of newaxislist that correspond to the grid, in the
 preferred order of the grid.

getIndex(self)
Get the grid index

getMask(self)
Get the mask array, if any, otherwise None is returned.

getMesh(self, transpose=None)
Generate a mesh array for the meshfill graphics method.
'transpose' is for compatibility with other grid types, is ignored.

intersect(self, spec)
Intersect with the region specification.

'spec' is a region specification of the form defined in the grid module.

Returns (mask, indexspecs) where
'mask' is the mask of the result grid AFTER self and region spec are interested.
'indexspecs' is a dictionary of index specifications suitable for slicing a
 variable with the given grid.

isClose(self, g)
Return 1 iff g is a grid of the same type and shape. A real element−by−element
comparison would be too expensive here.

reconcile(self, axes)

2/18

Return a grid that is consistent with the axes, or None.
For curvilinear grids this means that the grid−related axes are
contained in the 'axes' list.

size(self)

subSlice(self, *specs, **keys)
Get a transient subgrid based on an argument list <specs> of slices.

toGenericGrid(self, gridid=None)

writeScrip(self, cufile, gridTitle=None)
Write a grid to a SCRIP file.
cufile is a Cdunif file, NOT a CDMS file.
gridtitle is a string identifying the grid.

writeToFile(self, file)

Methods inherited from cdms.hgrid.AbstractHorizontalGrid:

checkConvex(self)
Check that each cell of the grid is convex in lon−lat space, with nodes defined counter−clockwise.
Return a 1D Numeric array of cells that fail the cross−product test.

fixCutCells(self, nonConvexCells, threshold=270.0)
For any mapping from a spherical to a planar surface, there is a linear cut.
Grid cells that span the cut may appear to be nonconvex, which causes
problems with meshfill graphics. This routine attempts to 'repair' the cut cell
boundaries so that meshfill recognizes they are convex.

nonConvexCells: 1D Numeric array of indices of nonconvex cells, as returned from
 checkConvex.
threshold: positive floating−point value in degrees.
 If the difference in longitude values of
 consecutive boundaries nodes exceeds the threshold, the cell is considered
 a cut cell.

On return, the grid boundaries are modified.
Return value is a 1D array of indices of cells that cannot be repaired.

getBounds(self)
Get the grid cell boundaries, as a tuple (latitudeBounds, longitudeBounds)

getLatitude(self)
Get the latitude coordinates.

getLongitude(self)
Get the longitude coordinates.

getWeightsArray(self)
Return normalized area weights, as an array of the same
shape as the grid.

3/18

hasCoordType(self, coordType)

listall(self, all=None)

setMask(self, mask, permanent=0)

subGridRegion(self, latRegion, lonRegion)

Methods inherited from cdms.grid.AbstractGrid:

info(self, flag=None, device=None)
Write info about slab; include dimension values and weights if flag

Methods inherited from cdms.cdmsobj.CdmsObj:

dump(self, path=None, format=1)
dump(self,path=None,format=1)
Dump an XML representation of this object to a file.
'path' is the result file name, None for standard output.
'format'==1 iff the file is formatted with newlines for readability

matchPattern(self, pattern, attribute, tag)
Match a pattern in a string−valued attribute. If attribute is None,
search all string attributes. If tag is not None, it must match the internal node tag.

matchone(self, pattern, attname)
Return true iff the attribute with name attname is a string
attribute which matches the compiled regular expression pattern, or
if attname is None and pattern matches at least one string
attribute. Return false if the attribute is not found or is not a string

searchPattern(self, pattern, attribute, tag)
Search for a pattern in a string−valued attribute. If attribute is None,
search all string attributes. If tag is not None, it must match the internal node tag.

searchPredicate(self, predicate, tag)
Apply a truth−valued predicate. Return a list containing a single instance: [self]
if the predicate is true and either tag is None or matches the object node tag.
If the predicate returns false, return an empty list

searchone(self, pattern, attname)
Return true iff the attribute with name attname is a string
attribute which contains the compiled regular expression pattern, or
if attname is None and pattern matches at least one string
attribute. Return false if the attribute is not found or is not
a string.

Methods inherited from cdms.internattr.InternalAttributesClass:

is_internal_attribute(self, name)
is_internal_attribute(name) is true if name is internal.

4/18

replace_external_attributes(self, newAttributes)
replace_external_attributes(newAttributes)
Replace the external attributes with dictionary newAttributes.

Methods inherited from PropertiedClasses.Properties.PropertiedClass:

__delattr__(self, name)

__getattr__(self, name)

__setattr__(self, name, value)

get_property_d(self, name)
Return the 'del' property handler for name that self uses.
Returns None if no handler.

get_property_g(self, name)
Return the 'get' property handler for name that self uses.
Returns None if no handler.

get_property_s(self, name)
Return the 'set' property handler for name that self uses.
Returns None if no handler.

set_property(self, name, actg=None, acts=None, actd=None, nowrite=None, nodelete=None)
Set attribute handlers for name to methods actg, acts, actd
None means no change for that action.
nowrite = 1 prevents setting this attribute.
 nowrite defaults to 0.
nodelete = 1 prevents deleting this attribute.
 nodelete defaults to 1 unless actd given.
if nowrite and nodelete is None: nodelete = 1

class DatasetGenericGrid(AbstractGenericGrid)

Method resolution order:
DatasetGenericGrid
AbstractGenericGrid
cdms.hgrid.AbstractHorizontalGrid
cdms.grid.AbstractGrid
cdms.cdmsobj.CdmsObj
cdms.internattr.InternalAttributesClass
PropertiedClasses.Properties.PropertiedClass

Methods defined here:

__init__(self, latAxis, lonAxis, id, parent=None, maskvar=None, tempmask=None, node=None)
Create a file curvilinear grid.

__repr__(self)

5/18

Methods inherited from AbstractGenericGrid:

__str__ = __repr__(self)

checkAxes(self, axes)
Return 1 iff every element of getAxisList() is in the list 'axes'.

clone(self, copyData=1)

flatAxes(self)
Return (flatlat, flatlon) where flatlat is a 1D NumPy array
having the same length as the number of cells in the grid, similarly
for flatlon.

genBounds(self)
Don't try to generate bounds for generic grids

getAxis(self, naxis)
Get the n−th index axis. naxis is 0 or 1.

getAxisList(self)

getGridSlices(self, domainlist, newaxislist, slicelist)
Determine which slices in slicelist correspond to the lat/lon elements
of the grid.
domainlist is a list of axes of a variable.
newaxislist is a list of result axes after the slicelist is applied to domainlist.
slicelist is a list of slices.

All lists are of equal length.

Return value is (newslicelist, gridaxislist) where
newslicelist is the elements of slicelist that correspond to the grid, in the
 preferred order of the grid.
gridaxislist is the elements of newaxislist that correspond to the grid, in the
 preferred order of the grid.

getIndex(self)
Get the grid index

getMask(self)
Get the mask array, if any, otherwise None is returned.

getMesh(self, transpose=None)
Generate a mesh array for the meshfill graphics method.
'transpose' is for compatibility with other grid types, is ignored.

intersect(self, spec)
Intersect with the region specification.

'spec' is a region specification of the form defined in the grid module.

6/18

Returns (mask, indexspecs) where
'mask' is the mask of the result grid AFTER self and region spec are interested.
'indexspecs' is a dictionary of index specifications suitable for slicing a
 variable with the given grid.

isClose(self, g)
Return 1 iff g is a grid of the same type and shape. A real element−by−element
comparison would be too expensive here.

reconcile(self, axes)
Return a grid that is consistent with the axes, or None.
For curvilinear grids this means that the grid−related axes are
contained in the 'axes' list.

size(self)

subSlice(self, *specs, **keys)
Get a transient subgrid based on an argument list <specs> of slices.

toGenericGrid(self, gridid=None)

writeScrip(self, cufile, gridTitle=None)
Write a grid to a SCRIP file.
cufile is a Cdunif file, NOT a CDMS file.
gridtitle is a string identifying the grid.

writeToFile(self, file)

Methods inherited from cdms.hgrid.AbstractHorizontalGrid:

checkConvex(self)
Check that each cell of the grid is convex in lon−lat space, with nodes defined counter−clockwise.
Return a 1D Numeric array of cells that fail the cross−product test.

fixCutCells(self, nonConvexCells, threshold=270.0)
For any mapping from a spherical to a planar surface, there is a linear cut.
Grid cells that span the cut may appear to be nonconvex, which causes
problems with meshfill graphics. This routine attempts to 'repair' the cut cell
boundaries so that meshfill recognizes they are convex.

nonConvexCells: 1D Numeric array of indices of nonconvex cells, as returned from
 checkConvex.
threshold: positive floating−point value in degrees.
 If the difference in longitude values of
 consecutive boundaries nodes exceeds the threshold, the cell is considered
 a cut cell.

On return, the grid boundaries are modified.
Return value is a 1D array of indices of cells that cannot be repaired.

getBounds(self)

7/18

Get the grid cell boundaries, as a tuple (latitudeBounds, longitudeBounds)

getLatitude(self)
Get the latitude coordinates.

getLongitude(self)
Get the longitude coordinates.

getWeightsArray(self)
Return normalized area weights, as an array of the same
shape as the grid.

hasCoordType(self, coordType)

listall(self, all=None)

setMask(self, mask, permanent=0)

subGridRegion(self, latRegion, lonRegion)

Methods inherited from cdms.grid.AbstractGrid:

info(self, flag=None, device=None)
Write info about slab; include dimension values and weights if flag

Methods inherited from cdms.cdmsobj.CdmsObj:

dump(self, path=None, format=1)
dump(self,path=None,format=1)
Dump an XML representation of this object to a file.
'path' is the result file name, None for standard output.
'format'==1 iff the file is formatted with newlines for readability

matchPattern(self, pattern, attribute, tag)
Match a pattern in a string−valued attribute. If attribute is None,
search all string attributes. If tag is not None, it must match the internal node tag.

matchone(self, pattern, attname)
Return true iff the attribute with name attname is a string
attribute which matches the compiled regular expression pattern, or
if attname is None and pattern matches at least one string
attribute. Return false if the attribute is not found or is not a string

searchPattern(self, pattern, attribute, tag)
Search for a pattern in a string−valued attribute. If attribute is None,
search all string attributes. If tag is not None, it must match the internal node tag.

searchPredicate(self, predicate, tag)
Apply a truth−valued predicate. Return a list containing a single instance: [self]
if the predicate is true and either tag is None or matches the object node tag.
If the predicate returns false, return an empty list

8/18

searchone(self, pattern, attname)
Return true iff the attribute with name attname is a string
attribute which contains the compiled regular expression pattern, or
if attname is None and pattern matches at least one string
attribute. Return false if the attribute is not found or is not
a string.

Methods inherited from cdms.internattr.InternalAttributesClass:

is_internal_attribute(self, name)
is_internal_attribute(name) is true if name is internal.

replace_external_attributes(self, newAttributes)
replace_external_attributes(newAttributes)
Replace the external attributes with dictionary newAttributes.

Methods inherited from PropertiedClasses.Properties.PropertiedClass:

__delattr__(self, name)

__getattr__(self, name)

__setattr__(self, name, value)

get_property_d(self, name)
Return the 'del' property handler for name that self uses.
Returns None if no handler.

get_property_g(self, name)
Return the 'get' property handler for name that self uses.
Returns None if no handler.

get_property_s(self, name)
Return the 'set' property handler for name that self uses.
Returns None if no handler.

set_property(self, name, actg=None, acts=None, actd=None, nowrite=None, nodelete=None)
Set attribute handlers for name to methods actg, acts, actd
None means no change for that action.
nowrite = 1 prevents setting this attribute.
 nowrite defaults to 0.
nodelete = 1 prevents deleting this attribute.
 nodelete defaults to 1 unless actd given.
if nowrite and nodelete is None: nodelete = 1

class FileGenericGrid(AbstractGenericGrid)

Method resolution order:
FileGenericGrid
AbstractGenericGrid

9/18

cdms.hgrid.AbstractHorizontalGrid
cdms.grid.AbstractGrid
cdms.cdmsobj.CdmsObj
cdms.internattr.InternalAttributesClass
PropertiedClasses.Properties.PropertiedClass

Methods defined here:

__init__(self, latAxis, lonAxis, id, parent=None, maskvar=None, tempmask=None, node=None)
Create a file curvilinear grid.

__repr__(self)

Methods inherited from AbstractGenericGrid:

__str__ = __repr__(self)

checkAxes(self, axes)
Return 1 iff every element of getAxisList() is in the list 'axes'.

clone(self, copyData=1)

flatAxes(self)
Return (flatlat, flatlon) where flatlat is a 1D NumPy array
having the same length as the number of cells in the grid, similarly
for flatlon.

genBounds(self)
Don't try to generate bounds for generic grids

getAxis(self, naxis)
Get the n−th index axis. naxis is 0 or 1.

getAxisList(self)

getGridSlices(self, domainlist, newaxislist, slicelist)
Determine which slices in slicelist correspond to the lat/lon elements
of the grid.
domainlist is a list of axes of a variable.
newaxislist is a list of result axes after the slicelist is applied to domainlist.
slicelist is a list of slices.

All lists are of equal length.

Return value is (newslicelist, gridaxislist) where
newslicelist is the elements of slicelist that correspond to the grid, in the
 preferred order of the grid.
gridaxislist is the elements of newaxislist that correspond to the grid, in the
 preferred order of the grid.

getIndex(self)

10/18

Get the grid index

getMask(self)
Get the mask array, if any, otherwise None is returned.

getMesh(self, transpose=None)
Generate a mesh array for the meshfill graphics method.
'transpose' is for compatibility with other grid types, is ignored.

intersect(self, spec)
Intersect with the region specification.

'spec' is a region specification of the form defined in the grid module.

Returns (mask, indexspecs) where
'mask' is the mask of the result grid AFTER self and region spec are interested.
'indexspecs' is a dictionary of index specifications suitable for slicing a
 variable with the given grid.

isClose(self, g)
Return 1 iff g is a grid of the same type and shape. A real element−by−element
comparison would be too expensive here.

reconcile(self, axes)
Return a grid that is consistent with the axes, or None.
For curvilinear grids this means that the grid−related axes are
contained in the 'axes' list.

size(self)

subSlice(self, *specs, **keys)
Get a transient subgrid based on an argument list <specs> of slices.

toGenericGrid(self, gridid=None)

writeScrip(self, cufile, gridTitle=None)
Write a grid to a SCRIP file.
cufile is a Cdunif file, NOT a CDMS file.
gridtitle is a string identifying the grid.

writeToFile(self, file)

Methods inherited from cdms.hgrid.AbstractHorizontalGrid:

checkConvex(self)
Check that each cell of the grid is convex in lon−lat space, with nodes defined counter−clockwise.
Return a 1D Numeric array of cells that fail the cross−product test.

fixCutCells(self, nonConvexCells, threshold=270.0)
For any mapping from a spherical to a planar surface, there is a linear cut.
Grid cells that span the cut may appear to be nonconvex, which causes
problems with meshfill graphics. This routine attempts to 'repair' the cut cell

11/18

boundaries so that meshfill recognizes they are convex.

nonConvexCells: 1D Numeric array of indices of nonconvex cells, as returned from
 checkConvex.
threshold: positive floating−point value in degrees.
 If the difference in longitude values of
 consecutive boundaries nodes exceeds the threshold, the cell is considered
 a cut cell.

On return, the grid boundaries are modified.
Return value is a 1D array of indices of cells that cannot be repaired.

getBounds(self)
Get the grid cell boundaries, as a tuple (latitudeBounds, longitudeBounds)

getLatitude(self)
Get the latitude coordinates.

getLongitude(self)
Get the longitude coordinates.

getWeightsArray(self)
Return normalized area weights, as an array of the same
shape as the grid.

hasCoordType(self, coordType)

listall(self, all=None)

setMask(self, mask, permanent=0)

subGridRegion(self, latRegion, lonRegion)

Methods inherited from cdms.grid.AbstractGrid:

info(self, flag=None, device=None)
Write info about slab; include dimension values and weights if flag

Methods inherited from cdms.cdmsobj.CdmsObj:

dump(self, path=None, format=1)
dump(self,path=None,format=1)
Dump an XML representation of this object to a file.
'path' is the result file name, None for standard output.
'format'==1 iff the file is formatted with newlines for readability

matchPattern(self, pattern, attribute, tag)
Match a pattern in a string−valued attribute. If attribute is None,
search all string attributes. If tag is not None, it must match the internal node tag.

matchone(self, pattern, attname)

12/18

Return true iff the attribute with name attname is a string
attribute which matches the compiled regular expression pattern, or
if attname is None and pattern matches at least one string
attribute. Return false if the attribute is not found or is not a string

searchPattern(self, pattern, attribute, tag)
Search for a pattern in a string−valued attribute. If attribute is None,
search all string attributes. If tag is not None, it must match the internal node tag.

searchPredicate(self, predicate, tag)
Apply a truth−valued predicate. Return a list containing a single instance: [self]
if the predicate is true and either tag is None or matches the object node tag.
If the predicate returns false, return an empty list

searchone(self, pattern, attname)
Return true iff the attribute with name attname is a string
attribute which contains the compiled regular expression pattern, or
if attname is None and pattern matches at least one string
attribute. Return false if the attribute is not found or is not
a string.

Methods inherited from cdms.internattr.InternalAttributesClass:

is_internal_attribute(self, name)
is_internal_attribute(name) is true if name is internal.

replace_external_attributes(self, newAttributes)
replace_external_attributes(newAttributes)
Replace the external attributes with dictionary newAttributes.

Methods inherited from PropertiedClasses.Properties.PropertiedClass:

__delattr__(self, name)

__getattr__(self, name)

__setattr__(self, name, value)

get_property_d(self, name)
Return the 'del' property handler for name that self uses.
Returns None if no handler.

get_property_g(self, name)
Return the 'get' property handler for name that self uses.
Returns None if no handler.

get_property_s(self, name)
Return the 'set' property handler for name that self uses.
Returns None if no handler.

set_property(self, name, actg=None, acts=None, actd=None, nowrite=None, nodelete=None)

13/18

Set attribute handlers for name to methods actg, acts, actd
None means no change for that action.
nowrite = 1 prevents setting this attribute.
 nowrite defaults to 0.
nodelete = 1 prevents deleting this attribute.
 nodelete defaults to 1 unless actd given.
if nowrite and nodelete is None: nodelete = 1

class TransientGenericGrid(AbstractGenericGrid)

Method resolution order:
TransientGenericGrid
AbstractGenericGrid
cdms.hgrid.AbstractHorizontalGrid
cdms.grid.AbstractGrid
cdms.cdmsobj.CdmsObj
cdms.internattr.InternalAttributesClass
PropertiedClasses.Properties.PropertiedClass

Methods defined here:

__init__(self, latAxis, lonAxis, id=None, maskvar=None, tempmask=None)
Create a file curvilinear grid.

__repr__(self)

toGenericGrid(self, gridid=None)

Data and other attributes defined here:

grid_count = 0

Methods inherited from AbstractGenericGrid:

__str__ = __repr__(self)

checkAxes(self, axes)
Return 1 iff every element of getAxisList() is in the list 'axes'.

clone(self, copyData=1)

flatAxes(self)
Return (flatlat, flatlon) where flatlat is a 1D NumPy array
having the same length as the number of cells in the grid, similarly
for flatlon.

genBounds(self)
Don't try to generate bounds for generic grids

getAxis(self, naxis)

14/18

Get the n−th index axis. naxis is 0 or 1.

getAxisList(self)

getGridSlices(self, domainlist, newaxislist, slicelist)
Determine which slices in slicelist correspond to the lat/lon elements
of the grid.
domainlist is a list of axes of a variable.
newaxislist is a list of result axes after the slicelist is applied to domainlist.
slicelist is a list of slices.

All lists are of equal length.

Return value is (newslicelist, gridaxislist) where
newslicelist is the elements of slicelist that correspond to the grid, in the
 preferred order of the grid.
gridaxislist is the elements of newaxislist that correspond to the grid, in the
 preferred order of the grid.

getIndex(self)
Get the grid index

getMask(self)
Get the mask array, if any, otherwise None is returned.

getMesh(self, transpose=None)
Generate a mesh array for the meshfill graphics method.
'transpose' is for compatibility with other grid types, is ignored.

intersect(self, spec)
Intersect with the region specification.

'spec' is a region specification of the form defined in the grid module.

Returns (mask, indexspecs) where
'mask' is the mask of the result grid AFTER self and region spec are interested.
'indexspecs' is a dictionary of index specifications suitable for slicing a
 variable with the given grid.

isClose(self, g)
Return 1 iff g is a grid of the same type and shape. A real element−by−element
comparison would be too expensive here.

reconcile(self, axes)
Return a grid that is consistent with the axes, or None.
For curvilinear grids this means that the grid−related axes are
contained in the 'axes' list.

size(self)

subSlice(self, *specs, **keys)
Get a transient subgrid based on an argument list <specs> of slices.

15/18

writeScrip(self, cufile, gridTitle=None)
Write a grid to a SCRIP file.
cufile is a Cdunif file, NOT a CDMS file.
gridtitle is a string identifying the grid.

writeToFile(self, file)

Methods inherited from cdms.hgrid.AbstractHorizontalGrid:

checkConvex(self)
Check that each cell of the grid is convex in lon−lat space, with nodes defined counter−clockwise.
Return a 1D Numeric array of cells that fail the cross−product test.

fixCutCells(self, nonConvexCells, threshold=270.0)
For any mapping from a spherical to a planar surface, there is a linear cut.
Grid cells that span the cut may appear to be nonconvex, which causes
problems with meshfill graphics. This routine attempts to 'repair' the cut cell
boundaries so that meshfill recognizes they are convex.

nonConvexCells: 1D Numeric array of indices of nonconvex cells, as returned from
 checkConvex.
threshold: positive floating−point value in degrees.
 If the difference in longitude values of
 consecutive boundaries nodes exceeds the threshold, the cell is considered
 a cut cell.

On return, the grid boundaries are modified.
Return value is a 1D array of indices of cells that cannot be repaired.

getBounds(self)
Get the grid cell boundaries, as a tuple (latitudeBounds, longitudeBounds)

getLatitude(self)
Get the latitude coordinates.

getLongitude(self)
Get the longitude coordinates.

getWeightsArray(self)
Return normalized area weights, as an array of the same
shape as the grid.

hasCoordType(self, coordType)

listall(self, all=None)

setMask(self, mask, permanent=0)

subGridRegion(self, latRegion, lonRegion)

Methods inherited from cdms.grid.AbstractGrid:

16/18

info(self, flag=None, device=None)
Write info about slab; include dimension values and weights if flag

Methods inherited from cdms.cdmsobj.CdmsObj:

dump(self, path=None, format=1)
dump(self,path=None,format=1)
Dump an XML representation of this object to a file.
'path' is the result file name, None for standard output.
'format'==1 iff the file is formatted with newlines for readability

matchPattern(self, pattern, attribute, tag)
Match a pattern in a string−valued attribute. If attribute is None,
search all string attributes. If tag is not None, it must match the internal node tag.

matchone(self, pattern, attname)
Return true iff the attribute with name attname is a string
attribute which matches the compiled regular expression pattern, or
if attname is None and pattern matches at least one string
attribute. Return false if the attribute is not found or is not a string

searchPattern(self, pattern, attribute, tag)
Search for a pattern in a string−valued attribute. If attribute is None,
search all string attributes. If tag is not None, it must match the internal node tag.

searchPredicate(self, predicate, tag)
Apply a truth−valued predicate. Return a list containing a single instance: [self]
if the predicate is true and either tag is None or matches the object node tag.
If the predicate returns false, return an empty list

searchone(self, pattern, attname)
Return true iff the attribute with name attname is a string
attribute which contains the compiled regular expression pattern, or
if attname is None and pattern matches at least one string
attribute. Return false if the attribute is not found or is not
a string.

Methods inherited from cdms.internattr.InternalAttributesClass:

is_internal_attribute(self, name)
is_internal_attribute(name) is true if name is internal.

replace_external_attributes(self, newAttributes)
replace_external_attributes(newAttributes)
Replace the external attributes with dictionary newAttributes.

Methods inherited from PropertiedClasses.Properties.PropertiedClass:

__delattr__(self, name)

__getattr__(self, name)

17/18

__setattr__(self, name, value)

get_property_d(self, name)
Return the 'del' property handler for name that self uses.
Returns None if no handler.

get_property_g(self, name)
Return the 'get' property handler for name that self uses.
Returns None if no handler.

get_property_s(self, name)
Return the 'set' property handler for name that self uses.
Returns None if no handler.

set_property(self, name, actg=None, acts=None, actd=None, nowrite=None, nodelete=None)
Set attribute handlers for name to methods actg, acts, actd
None means no change for that action.
nowrite = 1 prevents setting this attribute.
 nowrite defaults to 0.
nodelete = 1 prevents deleting this attribute.
 nodelete defaults to 1 unless actd given.
if nowrite and nodelete is None: nodelete = 1

Functions

readScripGenericGrid(fileobj, dims, whichType, whichGrid)
Read a 'native' SCRIP grid file, returning a transient generic grid.
fileobj is an open CDMS dataset or file object.
dims is the grid shape.
whichType is the type of file, either "grid" or "mapping"
if whichType is "mapping", whichGrid is the choice of grid, either "source" or "destination"

Data
CoordTypeToLoc = {'lat': 1, 'lev': 2, 'lon': 0}
LatitudeType = 'lat'
LongitudeType = 'lon'
MethodNotImplemented = 'Method not yet implemented'
TimeType = 'time'
VerticalType = 'lev'

18/18

	PCMDI Software Portal - Python: module cdms.gengrid

